Micro RNAs and Non-Small Cell Lung Cancer

  • Mirza Masroor Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India.
  • Amit Jain Dr Baba Saheb Ambedakar Medical College, Delhi, India.
  • Tayyaba Fatma Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India.
  • Anant Mohan All India Institute of Medical Science, New Delhi, India.

Abstract

Non-small cell lung cancer is a major leading cause of cancer-related death and its late diagnosis/prognosis, accounting for the high rate of mortality. Presences of circulating microRNAs (miRNAs) in body fluids represent stable and reproducible biomarkers for several solid tumors, including non-small cell lung cancer. Micro RNAs have been categorized as oncogenic microRNAs and “tumor suppressor micro RNAs” and miRNAs activities may provide exciting opportunities for early cancer detection. There is an urgent need to find a less invasive and a more reliable biomarker which can increase the probability of early non-small cell lung cancer detection.

Downloads

Download data is not yet available.

References

1. Olsen PH, Ambros V (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 216:671-680.
2. Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843-54.
3. Kozomara A, Griffiths-Jones S (2014). MiRBase. annotating high confidence microRNAs using deep sequencing data. potential target in the treatment of Non-Small- Cell Lung Carcinomas. Gene, 506:355-359.
4. Raponi M, Dossey L, Jatkoe T, et al (2009). MicroRNA classifiers Nucleic Acids Res; 42:D68-73.
5. Ambros V (2004). The functions of animal microRNAs. Nature, 431,350-355.
6. Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,116, 281-97.
7. Chen K, Rajewsky N (2007). The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet, 8, 93-103.
8. He L, Hannon GJ (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5, 522-31.
9. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 9, 102-14.
10. Lu J, Getz G, Miska EA, et al (2005). MicroRNA expression profiles classify human cancers. Nature, 435:834-838.
11. Rosenfeld N, Aharonov R, Meiri E, et al (2008). MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol, 26:462-469.
12. Zhang WC, Liu J, Xu X, et al (2013).The role of microRNAs in lung cancer progression. Med Oncol, 30:675-683.
13. Saito M, Schetter AJ, Mollerup S, et al (2011). The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin Cancer Res, 17:1875-1882.
14. Malleter M, Jacquot C, Rousseau B, et al (2012). miRNAs, a
15. for predicting prognosis of squamous cell lung cancer. Cancer Res, 69:5776-5783.
16. Lin PY, Yu SL, Yang PC (2010). MicroRNA in lung cancer. Br J Cancer, 103(8):1144-8.
17. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10: 704-714.
18. Bishop JA, Benjamin H, Cholakh H, et al (2010). Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach. Clin Cancer Res 16: 610-619.
19. Yanaihara N, Caplen N, Bowman E, et al (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189-198.
20. Yu SL, Chen HY, Chang GC, et al (2008). MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13: 48-57.
21. Seike M, Goto A, Okano T, et al (2009). MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA 106: 12085-12090.
22. Patnaik SK, Kannisto E, Knudsen S, et al (2010). Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 70:36-45.
23. Rodriguez A, Griffiths-Jones S, Ashurst JL, et al (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 1902-1910.
24. Lee Y, Ahn C, Han J, et al (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-419.
25. Yi R, Qin Y, Macara IG, et al (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17: 3011- 3016.
26. Denli AM, Tops BB, Plasterk RH, et al (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231-235.
27. Hammond S, Bernstein E, Beach D, et al (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293-329.
28. Diederichs S, Haber DA (2007). Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131: 1097-1108.
29. Suzuki HI, Yamagata K, Sugimoto K, et al (2009). Modulation of microRNA processing by p53. Nature 460: 529-533.
30. Lu J, Getz G, Miska EA, et al (2005). MicroRNA expression profiles classify human cancers. Nature, 435:834-838.
31. Yanaihara N, Caplen N, Bowman E, et al (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189-198.
32. Lin PY, Yu SL, Yang PC (2010). MicroRNA in lung cancer. Br J Cancer, 103(8):1144-8.
33. Takamizawa J, Konishi H, Yanagisawa K, et al (2004). Reduced expression of the let-7microRNAs in human lung cancers in association with shortened post-operative survival. Cancer Res, 64 (11):3753-6.
34. Liu B, Peng XC, Zheng XL, et al (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer (2009) 66(2):169-75.
35. Crawford M, Brawner E, Batte K, et al (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun, 373(4):607-12.
36. Feller SM (2001). Crk family adaptors- signalling complex formation and biological roles. Oncogene 20(44):6348-71.
37. Kobashigawa Y, Sakai M, NaitoM, et al (2007). Structural basis for the transforming activity of human cancer- related signaling adaptor protein CRK. Nat Struct Mol Biol 14(6):503-10.
38. Gibbons DL, Lin W, Creighton CJ, et al (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev, 23(18):2140-51.
39. Jiang L, Huang Q, Zhang S, et al (2010). Hsa-miR-125a- 3p and hsa-miR-125a-5p are down regulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer, 10:318.
40. Zhang JG, Wang JJ, Zhao F, et al (2010). MicroRNA-21(miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non- small cell lung cancer (NSCLC). Clin Chim Acta, 411(11-12):846-52.
41. Savita U, Karunagaran D (2013). MicroRNA- 106b-25 cluster targets b-TRCP2, increases the expression of Snail and enhances cell migration and invasion in H1299 (non-small cell lung cancer) cells. Biochem Biophys Res Commun, 434(4):841-7.
42. Chatterjee A, Chattopadhyay D, Chakrabarti G (2014). miR-17-5p down regulation con- tributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression. PLoS One, 9(4):e95716.
43. Zhong M, Ma X, Sun C, et al (2010). Micro RNAs reduce tumor growth and contribute to enhance cytotoxicity induced by gefitinib in non-small cell lung cancer. Chem Biol Interact (2010) 84(3):431-8.
44. Steeg PS (2003). Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer, 3(1):55-63.
45. Huang J, Song H, Liu B, et al (2013). Expression of Notch-1 and its clinical significance in different histological subtypes of human lung adenocarcinoma. J Exp Clin Cancer Res, 32:84.
46. Mitchell PS, Parkin RK, Kroh EM, et al (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513-8.
47. Roth C, Kasimir- Bauer S, Pantel K, et al (2011). Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer. Mol Oncol, 5(3):281-91.
48. Foss KM, Sima C, Ugolini D, et al (2011). MiR-1254 and miR-574-5p: serum-based micro RNA biomarkers for early-stage non- small cell lung cancer. J Thorac Oncol, 6:482-8.
49. Chang L, Youping D, Leilei W, et al (2013). Early diagnostic value of circu- lating MiRNA-21in lung cancer: a meta-analysis. Tsinghua Sci Technol, 18(5):441-5.
50. Roth C, Stuckrath I, Pantel K, et al (2012). Low levels of cell-free circulating miR-361-3p and miR-625*as blood-based mark- ers for discriminating malignant from benign lung tumors. PLoSOne 7(6):e38248.
51. Boeri M, Verri C, Conte D (2011). MicroRNA signatures in tissues and cancer. Cancer Imaging 6:9-12.
52. Hu G, Drescher KM, Chen XM (2012). Exosomal miRNAs: biological properties and therapeutic potential. Front Genet, 3:56.
53. Cazzoli R, Buttitta F, DiNicola M, et al (2013). MicroRNAs derived from circulating exosomes as non-invasive biomarkers for screening and diagnose lung cancer. J Thorac Oncol, 8(9):1156-62.
54. Rabinowits G, Gercel-Taylor C, Day JM, et al (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer, 10:42-6.Rabinowits G, Gercel-Taylor C, Day JM, et al (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer, 10:42-6.
55. Subramaniam S, Thakur RK, Yadav VK, et al (2013). Lung cancer biomarkers: state of the art. J Carcinog. ; 12:3.
56. Hayano T, Garg M, Yin D, et al (2013). SOX7 is downregulated in lung cancer. J Exp Clin Cancer Res,32:17.
57. Mac Donagh L, Gray SG, Finn SP, et al (2014). The emerging role of microRNAs in resistance to lung cancer treatments. Cancer Treat Rev,41(2):160-9.
58. Steeg PS (2003). Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer, 3(1):55-63.
59. Huang J, Song H, Liu B, et al (2013). Expression of Notch-1 and its clinical significance in different histological subtypes of human lung adenocarcinoma. J Exp Clin Cancer Res, 32:84.
60. Zhang B, Pan X, Cobb GP, et al (2007). microRNAs as oncogenes and tumor suppressors. Dev Biol, 302(1):1-12.
61. Hu Z, Chen X, Zhao Y, et al (2010). Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol, 28(10):1721-6.
62. Bi CL, Chng WJ (2011). miRNA deregulation in multiple myeloma. Chin Med J (Engl), 124:3164-3169.
63. Wu DG, Wang YY, Fan LG, et al (2011). MicroRNA-7 regulates glioblastoma cell invasion via targeting focal adhesion kinase expression. Chin Med J (Engl), 124:2616-2621.
64. Tang D, Shen Y, Wang M, et al (2013). Identification of plasma microRNAs as novel noninvasive biomarkers for early detection of lung cancer. Eur J Cancer Prev, 22:540-548.
65. Chin LJ, Ratner E, Leng S, et al (2008). A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res 68: 8535-8540.
66. Hayashita Y, Osada H, Tatematsu Y, et al (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65: 9628-9632.
67. Ebi H, Sato T, Sugito N, Hosono Y, et al (2009). Counter balance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene 28: 3371-3379.
68. Min GP, Chang HL, Woo JL, et al (2015). Unique microRNAs in lung adenocarcinoma groups according to major TKI sensitive EGFR mutation status. Diagnostic Pathology, 10:99.
69. Joshi S, Kotecha S (2007). Lung growth and development. Early Hum Dev, 83, 789-94.
70. Kozuki T, Hisamoto A, Tabata M, et al (2007). Mutation of the epidermal growth factor receptor gene in the development of adenocarcinoma of the lung. Lung Cancer, 58, 30-5.
71. Bahl A, Sharma DN, Rath GK, et al (2008). Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. Int J Radiat Oncol Biol Phys, 72, 630.
72. Jun O, Yuka K, Yuki O, et al (2015). Prognostic Impact of Hypoxia-Inducible miRNA-210 in Patients with Lung Adenocarcinoma. Journal of Oncology 10.1155/2015/316745.
73. Eilertsen S. Andersen S. Al-Saad, et al (2014). "Positive prognostic impact of miR-210 in non-small cell lung cancer," Lung Cancer, 272-278.
74. Jang JS, Jeon HS, Sun Z, et al (2012). Increased miR-708 pression in NSCLC and its association with poor survival in lung adenocarcinoma from never smokers. Clin Cancer Res. 18 (13):3658-67.
75. Devlin C, Greco S, Martelli F, et al (2011). miR-210: More than a silent player in hypoxia. IUBMB Life. 63(2):94-100.
76. Trang P, Wiggins JF, Daige CL, et al (2011). Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther. 19, 1116-1122.
77. Johnson CD, Esquela KA, Stefani G, et al (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res, 67, 7713-7722.
78. Kumar MS, Erkeland SJ, Pester RE, Chen, et al (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl. Acad. Sci. USA, 105, 3903-3908.
79. He XY, Chen JX, Zhang Z, et al (2010). The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J. Cancer Res. Clin. Oncol, 136, 1023-1028.
80. Esquela-KA, Trang P, Wiggins JF, et al (2008). The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7, 759-764.
81. Trang P, Medina PP, Wiggins JF, et al (2010). Regression of murine lung tumors by the let-7 microRNA. Oncogene, 29, 1580-1587.
82. Calin GA, Dumitru CD, Shimizu M, et al (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 99:15524-15529.
83. Nakamura T, Canaani E, Croce CM (2007). Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci USA, 104:10980-10985.
84. Saito Y, Liang G, Egger G, et al (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 9:435-443.
85. Johnson SM, Grosshans H, Shingara J, et al (2005). RAS is regulated by the let-7 microRNA family. Cell, 120:635-647.
86. Akao Y, Nakagawa Y, Naoe T (2006). let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull, 29:903-906.
87. Lee YS, Dutta A (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev, 21:1025-1030.
88. Sampson VB, Rong NH, Han J, et al (2007). MicroRNA let-7a down-regulates MYC and reverts, Cancer Res.67(20):9762-70.
89. Iorio MV, Ferracin M, Liu CG, et al (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 65:7065-7070.
90. He L, He X, Lim LP, et al (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447:1130-1134.\
91. Min GP, Chang HL, Woo JL, et al (2015). Unique microRNAs in lung adenocarcinoma groups according to major TKI sensitive EGFR mutation status. Diagnostic Pathology, 10:99.
92. Bhaskaran M, Wang Y, Zhang H, et al (2009). MicroRNA-127 modulates fetal lung development. Physiol Genomics, 37, 268-78.
93. Liu J, Lu KH, Liu ZL, et al (2012a). MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer, 12, 519.
94. Kesanakurti D, Maddirela DR, Chittivelu S, et al (2013). Suppression of tumor cell invasiveness and in vivo tumor
growth by microRNA-874 in non-small cell lung cancer. Biochem Biophys Res Commun, 434, 627-33.
95. Boutros PC, Lau SK, Pintilie M, et al (2009). Prognostic gene signatures for non-small-cell lung cancer. Proc Natl Acad Sci U S A. 106(8):2824-8.
96. Shen J, Stass SA, Jiang F (2013). MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett. 329(2):125-36.
97. Guan P, Yin Z, Li X, et al (2012). Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues. J Exp Clin Cancer Res, 31:54.
98. Yang WB, Chen PH, Hsu TS, et al (2014). Sp1-mediated microRNA-182 expression regulates lung cancer progression. Oncotarget, 5(3):740-753.
99. Wang M, Wang Y, Zang W, et al (2014) Downregulation of microRNA-182 inhibits cell growth and invasion by targeting programmed cell death 4 in human lung adenocarcinoma cells. Tumour Biol, 35(1):39-46.
100. Cho WC, Chow AS, Au JS (2009). Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer. 45(12):2197-206.
101. Zhu W, Liu X, He J, et al (2011). Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC Cancer,11:393-2407-11-393.
102. Xu F, Zhang H, Su Y, et al (2014). Up-regulation ofmicroRNA-183-3p is a potent prognostic marker for lung adenocarcinoma of female non-smokers. Clin Transl Oncol.16(11):980-5.
103. Husted S, Sokilde R, Rask L, et al (2011). MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells. Mol Pharm, 8(6):2055-2062.
104. He L, Thomson JM, Hemann MT, et al (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828-833.
105. O'Donnell KA, Wentzel EA, Zeller KI, et al (2005). c-Mycregulated microRNAs modulate E2F1 expression. Nature 435: 839 -843.
106. Dews M, Homayouni A, Yu D, et al (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38: 1060-1065.
Published
2016-09-28
How to Cite
1.
Masroor M, Jain A, Fatma T, Mohan A. Micro RNAs and Non-Small Cell Lung Cancer. Int Arch BioMed Clin Res [Internet]. 2016Sep.28 [cited 2020Sep.24];2(3):1-. Available from: https://www.iabcr.org/index.php/iabcr/article/view/152

Most read articles by the same author(s)